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Community Near-Fault Observatory
Fault Subsurface Structure Breakout



What do we really want
, o know abouft faultse




Probing faults with seismology

Earthquake distributions in time
and space are the most basic
seismological observations, so
let’s explore what they tell us
about fault properties and
behavior!




Stressing Rate & Fluid Pressures:
Southern Kansas Case Study

|ldentify families of near-repeating
earthquakes to look at how sequence
behavior varies

More prolific families near areas of higher
injected volumes.
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Quantitying Earthquake Clustering Behavior

Kagan and Jackson (1991) define a coefficient of
variation (C,) of inter-event times (T ) to characterize the

temporal evolution of earthquake sequences.

CV = GT/ T
o7 IS the standard deviation of T
Tis the average of T lijel=fpEte =iy,
background events

caused by steady

forcing (e.g., tectonic
stress or injection)
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Periodic Poisson --> Clustered

Mainshock-aftershock
seguences/swarms




Families close to high volume
injection are generally
Poissonian distributed (C,<2).
Some families have events
every ~10 days.

37.3

37.2 - Earthquakes are confinually

driven by high stressing rate &
pore pressure from nearby
injection

371 2

Other families are highly
clustered (C,>2) and mostly
occur far from wells

37.0

- Events occur on highly
stressed faults where small stress
changes from pore pressure
trigger the first event that is
followed by an aftershock
sequence.
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Clustering behavior tells us about stressing rate and fault conditions

(pore pressure, strength, pre-existing stress); more work and data
needed to untangile!
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Fault Slip Behavior: Can we tell - with seismology - if a fault will slip
SAF Case Study seismically or aseismicallye
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A = Nonclustered fraction
- Creep rate
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Examine earthquake behavior
(clustering, seismicity rate, b-value)
along a 150-km-long section of the
SAF

IS

Correlation coeff. = 0.933

Creep rate from
Jolivet et al. (2015)

N

= Nonclustered rate
- b value

The fraction of clustered events, and
to a lesser extent b-value, correlate

Cg 2 with the creep rate.
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Long records of seismicity
patterns can be used to

Loma Prieta

San Juan Bautista

Bitterwater

Parkfield
Slack Canyon
Cholame
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<4x
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<x 1989, 2004 mainshocks (nonclustered)

Nonclustered fraction o[ 7 0

Geodetic creep rate Coupling

2004 rupture

map fault coupling

Liu et al. (2022)
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All Earthquakes STt A Earthquake Magnitude

® Earthquakes 1 day before M4.4

° Earthq?uakes 1 day after M4.4 S
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Roughness defined as the mean out
of profile (or plane) distance.

Fault is 50% rougher in the along dip
direction compared to along strike

Fault corrugation sub-parallel to
strike apparent in 3D roughness

maps

Highest roughness is within the
rupture area of the largest

earthquake (M4.4)
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Pre-M4.4 Earthquake

Post-M4.4 Earthquake

3D Roughness
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b-Value vs. Roughness
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» Roughness and b-value are weakly correlated.
» Exception: Largest event is near the roughest fault section with corresponding low b-values.




Fault Zone Observatory Opportunities

Dense grids of seismic instrumentation recording
seismicity over several years would provide:
% Spatio-temporal evolution of seismicity at very high
resolution for understanding clustering and fault coupling
% Dense focal mechanism mapping for stress inversions

 Stress drop and finite fault inversions for rupture properties
and complexity

% Fault geometry and roughness at a range of depths

» Comparison of fault properties across different faults or fault
segments

% Integration with co-located geodetic data



Near-fault observatories could
probe the fault properties we

v readlly want to know!

Contact: ecochran@usgs.gov And many more...







