"Zipper Arrays" (USGS background) & Earthquake Resiliency for SCE's Power Grid

Ken Hudnut, Southern California Edison

SCEC Near-Fault Observatory Workshop October 27, 2022

Part 1. "Zipper Arrays" (USGS background)

USGS "Zipper Array" – southern San Andreas Fault (2007)

Observing Near-Fault Large Ground Motions; How Best to Observe?

Observing Static & Dynamic Displacements

In near-field region, $D_{dynamic} > D_{static}$

- very useful for EEW algorithms
- e.g., Yamada, Heaton, Aagaard
- FinDer (Böse, Heaton & Hauksson, 2012)

Fault slip means displacements are instantaneous right at the fault, move with rupture front

Direct observation of displacement is **fastest**

Displacements decrease with 1/r²

At distances > 50 km, surface wave amplit.'s will exceed displacements and static will travel out at approx. S-wave velocity

Examine rapid post-seismic behavior (friction law?)

Part 2. Earthquake Resiliency for SCE's Power Grid

1986 M 6.0 SCE Switchyard Damage Photo Credit: Ken Lubas

International standard (IEEE 693) has been made more stringent after damaging earthquakes, and SCE's bulk substation switchyards have been mitigated

Engineering and geohazards guidance matters; we know what to do, but mitigations are costly, so the work needs to be prioritized

Faults

Changing the Outcome

By mitigating ahead of time, SCE will strategically reduce the *safety* and *reliability* impacts of future 'severe' & 'catastrophic' earthquakes

Key Concepts:

- Seismic Resiliency Pyramid
 - start with top assets
 - e.g., highly occupied buildings
 - "chip away" & reduce *safety* risks
- Reduce Widespread Outage
 - prioritize mitigations to speed system restoration – reliability!

SCE Seismic Resiliency Program (2016 – present)

SCE Seismic Resiliency Program (2016 – present)

Accomplishments to Date

\$156.7M invested by SCE in seismic mitigation projects from 2016-2021

50 Electric Mitigation projects completed

33 Bulk power MEER Buildings Assessed 4
MEER building mitigations completed and
6 under Mitigation in 2022

28 Facility Mitigation projects completed 60 Facility Assessments completed

60 Rack and Cabinet Mitigations completed at a DC and 13 Telecom Racks Mitigated between 2 substations.

23 Generation Facility Assessments Completed

Seismic Assessments & Mitigation: MEER and Control Bldg's

Completed Seismic Retrofit of a Reinforced Masonry Wall at an SCE AA Substation; Vertical Pipes Added and Ties from Walls to Roof Added

'Strongbacks' are pipes attached to an exterior wall of a MEER

Completed Seismic Mitigations in Comm Rooms and SCE Data Center: Equipment Racks Retrofitted or Replaced

Shake-table tests identified the need to strengthen existing aluminum racks to limit swaying.

They are either replaced with seismic qualified 2-post steel racks or retrofitted with additional bracing

replaced with 4-post seismic qualified racks to

secure critical equipment

