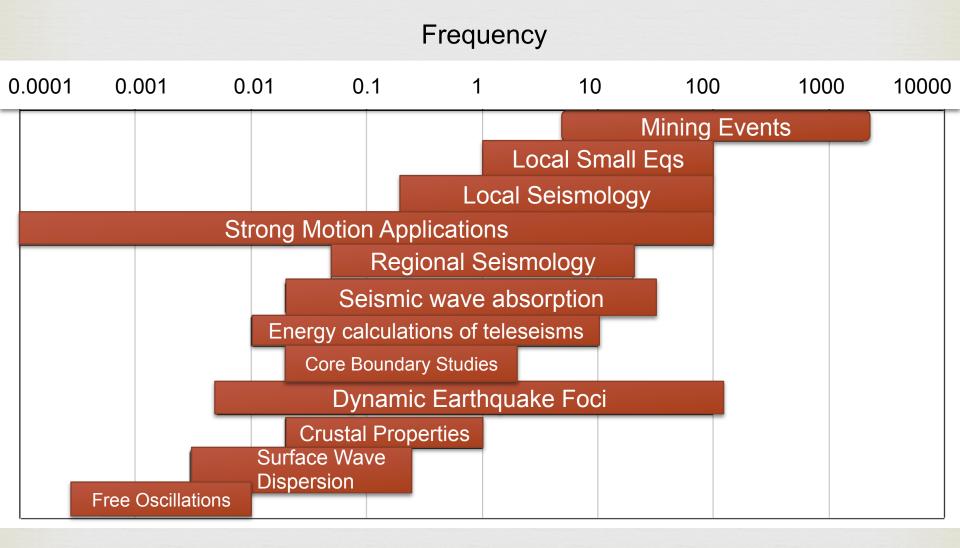
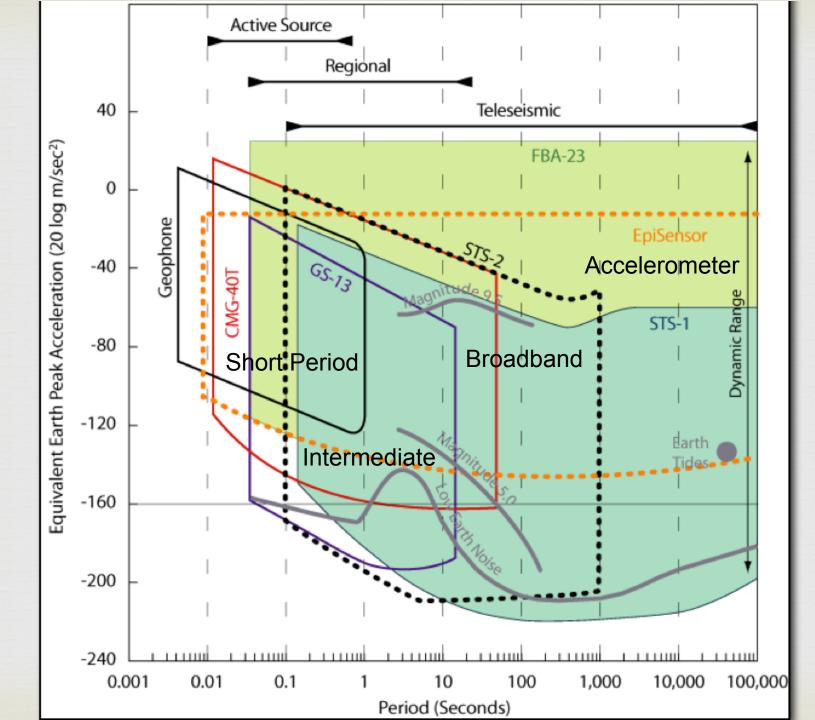

Seismic Equipment, Seismic Data and Metadata

Justin Sweet, IRIS Adapted from presentation by: George Slad, IRIS/PASSCAL Instrument Center

Sensors by frequency range of interest


 Seismic waves contain a wide range of frequencies that no one sensor records well
 Analogous to light and sound


Seismic	Light	Sound
Short-period	Blue	Treble
Long-period	Red	Bass

The frequency range is large because the process of earth deformation occurs at many different rates and scales.

Frequency Ranges

Very Broadband (VBB) and Broadband Sensors (BB)

VBB (e.g. STS-1, KS-54000)
 Iow noise
 flat velocity response ~300 seconds to ~5 - 10 Hz
 large dynamic range

№ BB (e.g. STS-2, CMG3-T, T240 & T120)
 ☞ flat velocity response from < 100-120 s -- ~ 50 Hz

http://ida.ucsd.edu/Sensors/sts1.html

http://www.iris.edu/hq/files/programs/gsn/instrumentation/54000.jpg

Intermediate Sensors

- 3 component seismometers with corner periods of 30-40 seconds

http://www.earth.sinica.edu.tw/~smdmc/seismology/einstrument.htm http://www.passcal.nmt.edu

Short Period

A 3 component seismometers that cover high frequency bands (1-100+ Hz)

Used in both passive and active experiments

High Frequency

Cover high frequency bands of 4.5 to 100 Hz
 Most often used in active source experiments
 Common examples are L28s,vertical geophones for Texans, Y28/GS11,

Accelerometers

- Known as strong-motion sensors
- Designed to measure large amplitude, high frequency seismic waves
- Strong ground motion often to blame for structural damage
- Examples include Episensor
 ES-T

Data/Datalogger

Requirements

- Stable oscillator (regular precise interval sampling)
- CS Robust timing (GPS)
- **G** High Resolution, Linear A/D
- **v** reliable OS and data storage
- cos means to interface with telemetry systems
- simple, easy-to-understand user interface
- useful state-of-health and logs for trouble-shooting

Dataloggers

RT-125A (Texan)

№ 3-6 channelDataloggersQ330RT-130

http://www.passcal.nmt.edu/content/instrumentation/dataloggers

Real-Time Telemetry

http://earthquake.usgs.gov/monitoring/operations/station.php?network=IU&station=PTCN

What powers these stations?

http://www.passcal.nmt.edu/~bob/passcal/slise/images/1130.jpg

http://www.emergency-response-planning.com/Portals/87350/images/power%20lines%201-resized-600.jpg

are Where we may be going: Purpose-Built Direct Burial Broadband Sensors

Direct Burial Evolution

- Chile RAMP 2010
- Sweetwater Array 2014

- Simple/Quick Installs (~30 60 minutes)
- Comparable quality data
- Purpose-built sensors
 - Water-proof
 - Increased tilt tolerance

Generalized Data And Meta-Data

(%

Who collects the meta-data?

Represent Networks Metwork operators on the ground **GSN/TA field engineers** document everything **R** Temporary deployments: **C**⁸ Pls **G** grad students **volunteers**

Meta-data... from the beginning

All of the field notes provide the meta-data and the raw data collected is your waveform data

Meta-data – really important!

Without accurate meta-data, data are almost useless
 Common errors:

- -Wrong equipment types
- -Wrong location (lat, long, elev)
- -Wrong start and/or end dates
- -Wrong sensor orientation
- -No serial numbers or they are incorrect

All of this info comes from field notes, please take them carefully!

Data Formats

SEED/MiniSEED/Dataless and SAC

SEED

 Adopted by the Federation of Digital Seismographic Networks (FDSN) in 1987

SEED volume

Data mini-seed

Meta-data dataless

Miniseed: data only

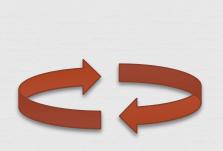
Fixed section of data header

- STATION NAME <sta>, example: STA1, EP01
- NETWORK CODE <net>, example: XN, PI
- CHANNEL NAME-refer to Appendix A in SEED manual
- LOCATION CODE
 - Usage varies by network
 - Usually left blank in PASSCAL experiments
- Start/end time
- Total number of samples
- Sample rate
- Data header quality indicator: example: D, R, Q, M

Time – series

Miniseed: data only

Fixed section of data header


- STATION NAME, example: STA1, EP01
- **NE**TWORK CODE, example: XN, PI
- **CH**ANNEL NAME, refer to Appendix A in SEED manual
- LOCATION CODE
- Usage varies by network
- Usually left blank in PASSCAL experiments
- Start/end time
- Total number of samples
- Sample rate
- Data header quality indicator: example: D, R, Q, M

Data... Hime series... wiggles

Full SEED volume

Dataless

Mini-seed

- Station name
- Network code
- Channel name
- Location code
- Start/end time
- Sample rate
- Number of samples

Dataless SEED

Contains the meta-data for your experiment. Including: instrument types & response; station coordinates; compression type, *etc*.

A dataless contains NO waveform data.

Meta-data: Required Information

Network

FDSN network code assigned

Station

Number of stations, location, SEED station name

Instrumentation

• Type of sensor and datalogger, serial numbers, sensor orientation, gain

Time

 Start time, end time, exact times when configurations change

Data streams recorded

- Number of data streams
- Sample rates recorded

Standard for the Exchange of Earthquake Data

SEED Format Version 2.4 August, 2012

http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf

MiniSEED Example

XR ST11 HHZ, 000002, D start time: 2013,146,00:00:40.525000 number of samples: 3097 sample rate factor: 100 (100 samples per second) sample rate multiplier: 1 number of blockettes: 1 time correction: 0 data offset: 64 first blockette offset: 48 BLOCKETTE 1000: (Data Only SEED) next blockette: 0 encoding: STEIM 2 Compression (val:11) byte order: Big endian (val:1) record length: 4096 (val:12) 171 179 208 272 326 306

Dataless Example

#	+	+	
#	Station header	Station ST11 SEED	
tape			
#	+	+	1
#			
B050F03	Station code:	ST11	
B050F04	Latitude:	33.733700	
B050F05	Longitude:	-82.152700	
B050F06	Elevation:	135.000000	
B050F09	Name:	Modoc, SC	
B050F10	Owner Code Lookup:	2 modoc	
B050F11	32-bit word order:	3210	
B050F12	16-bit word order:	10	
B050F13	Starting date:	2013,102,00:00:00.0000	
B050F14	Ending date:	2013,171,23:59:59.9999	
B050F15	Update flag:	Ν	
B050F16	Network Code:	XR	

#	+ Station ST11 Channel HHZ +
#	+ ++ +
#	
B052F04	Channel: HHZ
B052F03	Location:
B052F05	Subchannel: 0
B052F06	Instrument lookup: 6 Guralp CMG3T/Reftek 130 Datalogger
B052F07	Comment: T34432 9255
B052F08	Signal units lookup: 4 M/S - velocity in meters per second
B052F09	Calibration units lookup: 5 V - emf in volts
B052F10	Latitude: 33.733700
B052F11	Longitude: -82.152700
B052F12	Elevation: 135.000000
B052F13	Local depth: 0.000000
B052F14	Azimuth: 0.000000
B052F15	Dip: -90.00000
B052F16	Format lookup: 3 Format Information Follows
B030F03	Format Name: Steim2 Integer Compression Format
B030F05	Data family: 50
B030F06	Number of Keys: 14

B052F17	Log2 of Data record length:	12
B052F18	Sample rate:	100
B052F19	Clock tolerance:	0.0001
B052F21	Channel flags:	G
B052F22	Start date:	2013,117,00:00:00.0000
B052F23	End date:	2013,171,13:01:00.0000
B052F24	Update flag:	Ν

.

#	+	+	+	+
#	+	Response (Poles &	& Zeros), ST11 ch H⊦	IZ +
#	+	+	+	+
#				
B053F03		r function type:	A [Laplace Transfor	m (Rad/sec)]
B053F04	•	equence number:	1	
B053F05		ise in units lookup:		meters per second
B053F06		se out units lookup:	V - emf in volts	
B053F07		nalization factor:	5.71402E+08	
B053F08		ization frequency:	0.3	
B053F09		r of zeroes:	2	
B053F14		r of poles:	5	
#	Complex			
#	i real	imag real_err	01	
B053F10-		000000E+00 0.000000		
B053F10-		000000E+00 0.000000	E+00 0.00000E+00	0.000000E+00
#	Complex		or imag arror	
# B053F15-	i real	imag real_err 701000E-02	ror imag_error	0 000000000000
B053F15-		701000E-02 -3.701000 701000E-02 -3.701000		0.000000E+00
		131000E+03 0.000000		
		005000E+03 0.000000		
B053F15-		027000E+02 0.000000		
	10 + 0.	52100001.02 0.000000		

# # #	+ ++ + + Channel Gain, ST11 ch HHZ + + ++ +
#	T TT T
B058F03 B058F04 B058F05 B058F06 #	
#	+ ++ +
# #	+ Response (Coefficients), ST11 ch HHZ +
# #	+ ++ +
# B054F03 B054F04 B054F05 B054F06 B054F07 B054F10 #	Transfer function type:DStage sequence number:2Response in units lookup:V - emf in voltsResponse out units lookup:COUNTS - digital countsNumber of numerators:0Number of denominators:0
#	+ ++ +
#	+ Decimation, ST11 ch HHZ +
# B057F03 B057F04 B057F05 B057F06 B057F07 B057F08	+ ++ + Stage sequence number: 2 Input sample rate: 1.024000E+05 Decimation factor: 1 Decimation offset: 0 Estimated delay (seconds): 0.000000E+00 Correction applied (seconds): 0.000000E+00

FILE: 2013.146.00.00.00.0050.XR.ST11..HHZ.D.SA C - 1

SAC file

NPTS = 8640000 B = 0.000000e+00E = 8.639998e+04IFTYPE = TIME SERIES FILE LEVEN = TRUE DELTA = 1.000000e-02**IDEP = UNKNOWN** DEPMIN = -2.575600e+04DEPMAX = 2.416400e+04DEPMEN = 2.389532e+02 KZDATE = MAY 26 (146), 2013 KZTIME = 00:00:00.005 KSTNM = ST11 CMPAZ = 0.000000e+00CMPINC = 0.000000e+00STLA = 3.373370e+01 STLO = -8.215270e+01 STEL = 1.350000e+02 STDP = 0.000000e+00 KHOLE = LOVROK = TRUE NVHDR = 6NORID = 0NEVID = 0LPSPOL = FALSE LCALDA = TRUEKCMPNM = HHZ KNETWK = XR

Viewing Data

Real PASSCAL Quick Look (PQL) reads mini-seed Real Provides a means to quickly assess data quality for:

- Time series, SOH information
- Spectra
- Header information
- Filtering
- View in absolute, relative time (helicorder plots)

Station Metrics

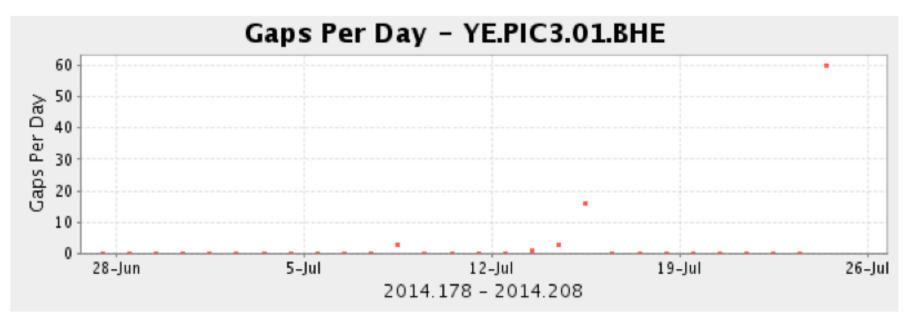
What's out there... Mass positions Timing Latency/Gaps (telemetry) RMS Power Spectral Density Plots (PSDs) Probability Density Functions of PSDs

What's coming... DMC's Mustang... Looking at the PIC Direct Burial Testing Network (YE) via QUACK

Network Operations Overview
 Latency
 Gaps
 Sensor comparisons
 Channel RMS values
 PDF PSD

Total Latency for Network: YE

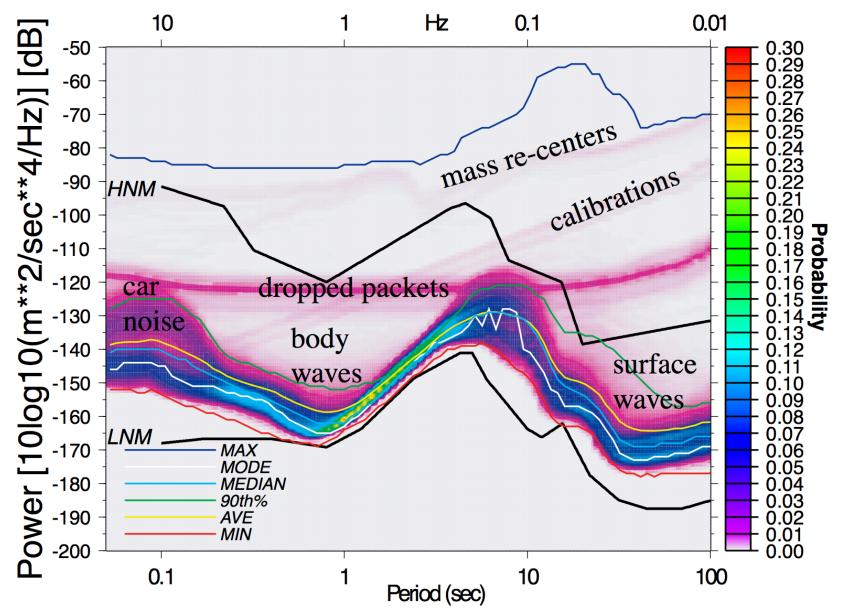
http://www.iris.washington.edu/servlet/latency/selector.do

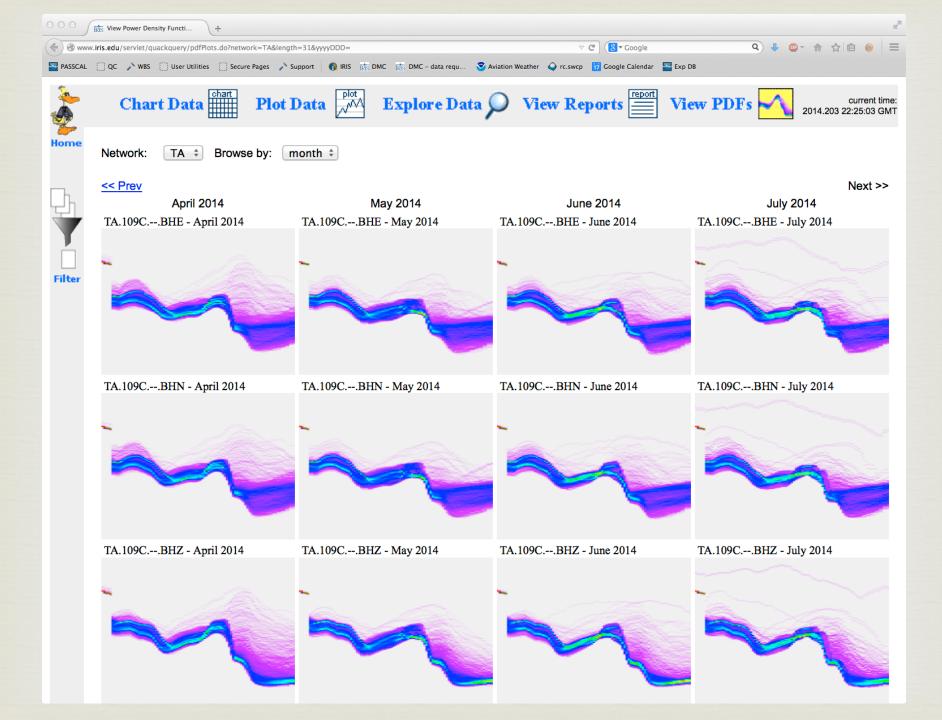

000

Number of Gaps Per Day

12²¹

Image: www.iris.edu/servlet/quackquery/qcPlotPage.do?startTime=2014.178&schemas=BUD&station=PIC3&location=01&selectName=Num

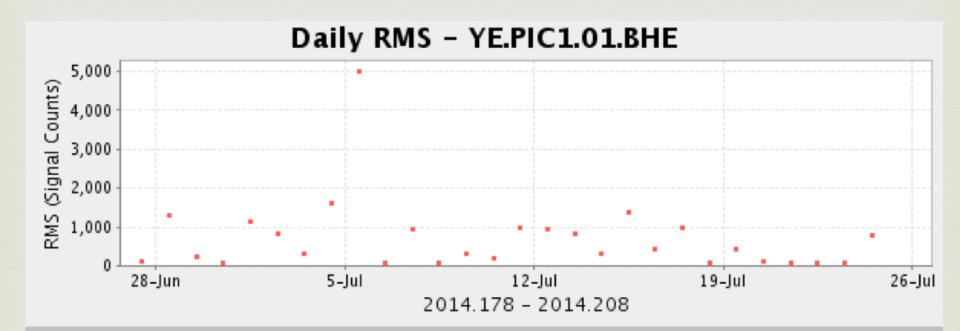

Send To Printer

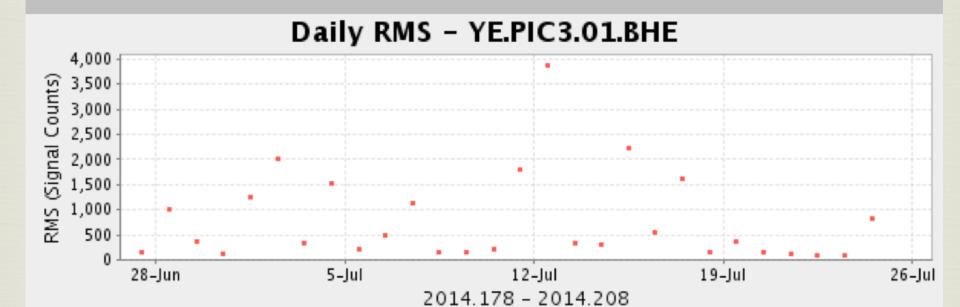


http://www.iris.washington.edu/servlet/qrm/multiDay.do

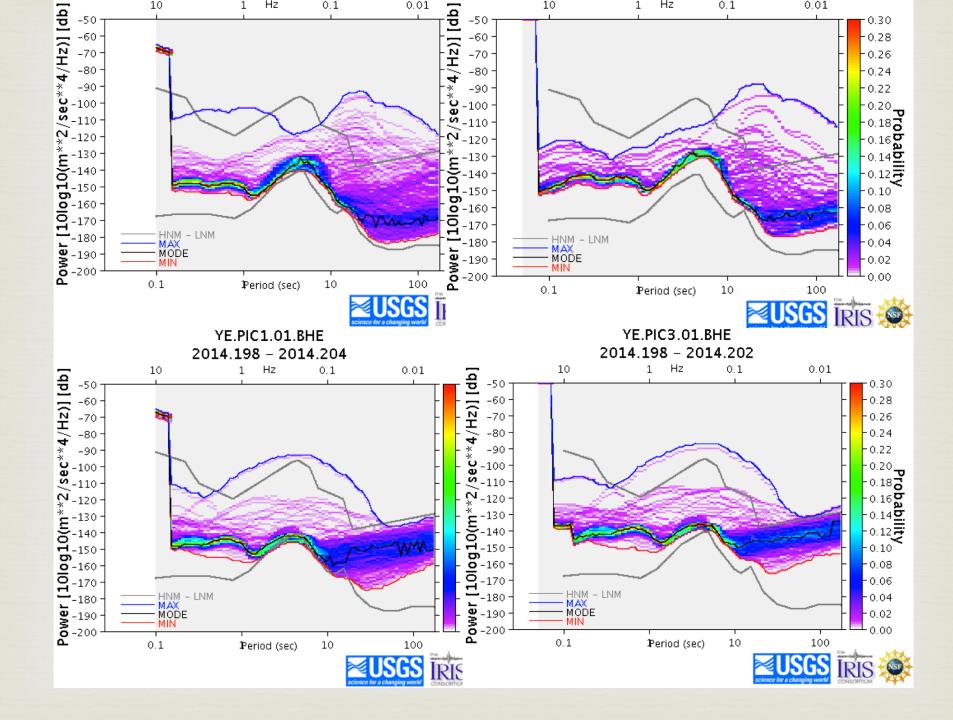
Power Spectral Density (PSDs)

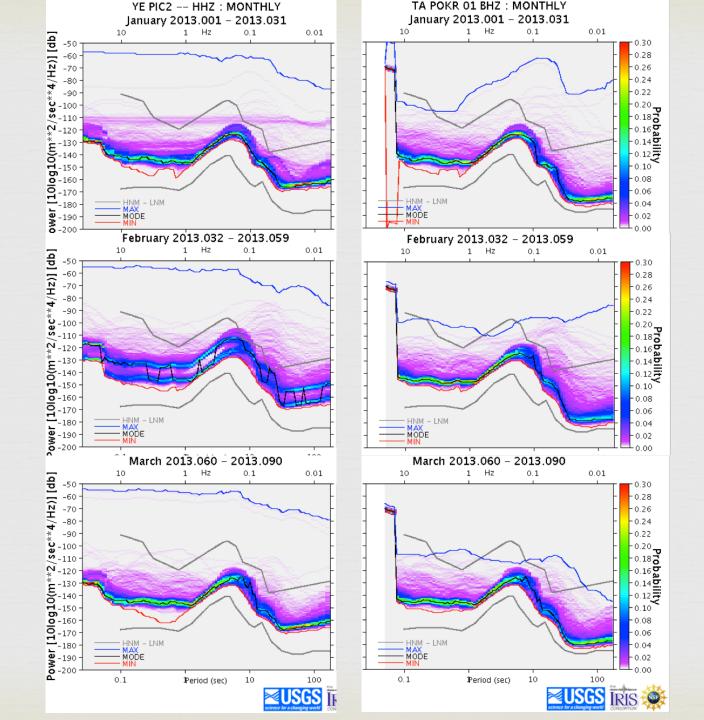
HLID BHZ PDF: # 18636 PSDs





Sensitivity Problem


Poker Flat, Alaska PASSCAL test stations
 Prototypes
 Direct burial emplacements


Comparing:
 TA POKR - Trillium 120 Post Hole
 YE PIC2 – Trillium Compact Post Hole

http://www.iris.edu/servlet/quackquery/multiplot_network.do?selectedPlot=Daily+Signal+RMS&network=YE

2014 PASSCAL Experiment: IlluMinating the architecture of the greater MoUnt St. Helens... (iMUSH)