Instrument Response Functions aka 'The Dark Arts'

Slides first authored and presented by Bob Woodward Exercises first authored and presented by Suzan van der Lee Merged and Modified by Suzan van der Lee, with and additional slide form Chuck Ammon.

EarthScope USArray Data Processing Short Course August 1-5, 2016 Northwestern University

Outline

- The basics ground motion to counts
- What each stage does
- Reading RESP files
- When to use 'em, when to lose 'em
- Remove the instrument response from a record of choice.

From Earth to Your Desktop

Seismometer Types

The signal processing chain

- Cascade of Finite Impulse Response (FIR) filters
 - Provide anti-alias low-pass filters
 - Each low-pass followed by decimation

FIR Cascade

 Combined effect of FIR cascade prevents aliasing

FIR Cascade - Cumulative Response

 Response shown for final BH channel sampled at 20 sps

The TA: Composite FIR Filter

- Represent the entire FIR filter cascade with a single filter
- Seed provides time domain representation

Time Domain Representation

Frequency Response

Some Comments on Phase

- TA uses Quanterra Q330 data acquisition systems
 All Q330s in "linear phase" FIR filter configuration
- Linear phase FIR filters
 - Constant phase delay as a function of frequency
 - Phase delay correction is applied
 - Applied correction specified in metadata
 - Acausal
- Q330 can be programmed to use minimum phase filters
 - Causal
 - Non-constant phase
- Want more info?
 - Of Poles and Zeros by Frank Scherbaum

Recap on FIR Filters

- What are they used for?
 - Low-pass anti-alias filtering
- When can you ignore them?
 - When working at frequencies reasonably^{*} below the Nyquist frequency
- What are their side-effects?
 - Slight rippling (in amplitude) near Nyquist frequency
 - Acausal ringing for sharp onsets (ringing is at frequencies near Nyquist)
- What can be done about the side-effects?
 - Knowledge is power steer clear of side-effects

Obtaining the Instrument Response

- SEED volume provides all information (metadata) necessary to compute the *complete*^{*} instrument response
- *rdseed* will extract the metadata into ASCII files
 - Use the "-R" option on *rdseed*
 - Creates "RESP" files*
- Key reference on how to interpret the instrument responserelated metadata
 - SEED Manual, Appendix C
- What follows are some notes on how to read RESP files

Reading a RESP file

- The metadata in SEED volumes are structured into "blockettes"
- Blockettes are structured into fields
- RESP files identify blockette & field
 - Everything to the right of the colon is the field value
 - Comments indicated by "#"

#	<< IRIS SEED R	eader, Release 4.7.5 >>
#		
#	====== CHANN	EL RESPONSE DATA ======
B050F03	Station:	X22A
B050F16	Network:	ТА
B052F03	Location:	??
B052F04	Channel:	BHZ
B052F22	Start date:	2008,010,00:00:00
B052F23	End date:	No Ending Time
#		=========================

Stage 1 - Seismometer

#	+ +		+ +
#	+ Response (H	Poles & Zeros), X22A ch BHZ	+
#	+ +		+ +
#			
B053F03	Transfer function type:	A [Laplace Transform	(Rad/sec)]
B053F04	Stage sequence number:	1	
B053F05	Response in units lookup:	M/S - velocity in me	ters per second
B053F06	Response out units lookup:	V - emf in volts	
B053F07	A0 normalization factor:	5.714E+08	
B053F08	Normalization frequency:	0.2	
B053F09	Number of zeroes:	2	
B053F14	Number of poles:	5	N
#	Complex zeroes:		$\Pi(\mathbf{s}-\mathbf{r})$
#	i real imag	real error imag error	$\prod_{n=1}^{n} (S^{n-1}n)$
B053F10-13	0 0.00000E+00 0.00000E+00	0.000000E+00 0.000000E+00	$G(f) = S_d A_0 \frac{n=1}{N} = S_d A_0 H_p(s)$
B053F10-13	1 0.00000E+00 0.00000E+00	0.000000E+00 0.000000E+00	\mathbf{T}
#	Complex poles:		$(s - p_m)$
#	i real imag	real_error imag_error	m=1
B053F15-18	0 -3.701000E-02 3.701000E-02	2 0.000000E+00 0.000000E+00	
B053F15-18	1 -3.701000E-02 -3.701000E-02	2 0.000000E+00 0.000000E+00	
B053F15-18	2 -1.131000E+03 0.000000E+00	0.000000E+00 0.000000E+00	
B053F15-18	3 -1.005000E+03 0.000000E+00	0.000000E+00 0.000000E+00	$s = i2\pi f$
B053F15-18	4 -5.027000E+02 0.000000E+00	0.000000E+00 0.000000E+00	
#			
#	+ +		+ +
#	+ Char	nnel Gain, X22A ch BHZ	+
#	+ +	··	, + +
#			
B058F03	Stage sequence number:	1	
B058F04	Gain:	1.504200E+03	
B058F05	Frequency of gain:	2.000000E-01 HZ	16
B058F06	Number of calibrations:	0	10

Stage 2 - "Mechanical \rightarrow electrical"

#	+ +			+	+
#	+ Response (Coefficients), X22A ch BHZ		Z	+	
#	+ +			+	+
#					
B054F03	Transfer function type:		D		
B054F04	Stage sequence number:		2		· · · · ·
B054F05	Response in units lookup):	V - emf in volts		Unit conversion
B054F06	Response out units looku	ıp:	COUNTS - digital o	counts	
B054F07	Number of numerators:		0		
B054F10	Number of denominators:		0		
#					
#	+ +		+		+
#	+	Decimation,	X22A ch BHZ		+
#	+ +		+		+
#					
B057F03	Stage sequence number:		2		
B057F04	Input sample rate:		4.00000E+01		
B057F05	Decimation factor:		1		
B057F06	Decimation offset:		0		
B057F07	Estimated delay (seconds	s):	0.00000E+00		
B057F08	Correction applied (seco	onds):	0.00000E+00		
#					
#	+ +			+	+
#	+	Channel Gai	n, X22A ch BHZ		+
#	+ +			+	+
#					
B058F03	Stage sequence number:		2		Digitizor goin
B058F04	Gain:		4.194300E+05		
B058F05	Frequency of gain:		2.000000E-01 HZ		
B058F06	Number of calibrations:		0		

#	+ +		+	+
#	+	Response (Coeffici	ents), X22A ch BHZ	+
#	+ +		+	+
#				
B054F03	Transfer function ty	ype:	D	
B054F04	Stage sequence number	er:	3	
B054F05	Response in units lo	ookup:	COUNTS - digital count	S
B054F06	Response out units 1	lookup:	COUNTS - digital count	S
B054F07	Number of numerators	s:	39	
B054F10	Number of denominato	ors:	0	
#	Numerator coefficier	nts:		
#	i, coefficient, e	error	Stage 3 - Cu	mulative FIR filter
B054F08-09	0 1.671680E-13 (0.000000E+00	Stage 5 - Cu	
B054F08-09	1 5.201300E-07 (0.000000E+00		T I
•				
. (N	B: coefficients delete	ed to save space)		$v = \sum b x$
•				$y_k \sum n^{k-n}$
B054F08-09	37 8.027790E-06 0	0.000000E+00		n = 0
B054F08-09	38 -4.512370E-06 (0.000000E+00		
#				L
#	+	+	+	
#	+	Decimation,	X22A ch BHZ	$C(f) = S \sum b e^{-n}$
#	+	+	+	$G(J) - D_d \neq U_n Z$
#				
B057F03	Stage sequence number	er:	3	n=0
B057F04	Input sample rate:		4.000000E+01	
B057F05	Decimation factor:		1	
B057F06	Decimation offset:		0	0
B057F07	Estimated delay (see	conds):	5.000000E-01	$\sim - o^{i 2 \pi f \delta t}$
B057F08	Correction applied ((seconds):	5.000000E-01	2 - e
#		· · ·		
#	+ +	+	+	+
#	+	Channel Gai	.n, X22A ch BHZ	+
#	+ -	+	+	+
#				
B058F03	Stage sequence number	er:	3	
B058F04	Gain:		1.00000E+00	10
B058F05	Frequency of gain:		2.000000E-01 HZ	18
B058F06	Number of calibratic	ong •	0	

Stage "0" - Overall Sensitivity

#	+ +	+ ·
#	+ Channel Sensit	tivity, X22A ch BHZ
#	+ +	+ ·
#		
B058F03	Stage sequence number:	0
B058F04	Sensitivity:	6.309070E+08
B058F05	Frequency of sensitivity:	2.000000E-01 HZ
B058F06	Number of calibrations:	0

Exploring Instrument Response

- 1. Install JPlotResp
- 2. Start JPlotResp (which you installed on Monday)
- 3. Enter network "TA" and your favorite station name, e.g. U54A at Nelson's Funny Farm, TN.

Network: TA Station: U54A	Location: Channel: BHZ
Min Freq: 0.0001 Max Freq: 100.0	Num Freqs: 100
Begin Time	End Time
Year: Julian Day: Time:	Year: Julian Day: Time:
Enable Multi-Date Outputs:	Remember Settings: 🗹
O Filenames:	Browse
• Server: irisws.prop	Browse

- 5. Select the Server: irisws radio button (web services)
- 6. Click "Plot" at the bottom

Exploring Instrument Response

- 1. Now look at each of the three stages separately using the "Start Stage" and "End Stage" fields.
- 2. Now use "0" for both Stage fields.
- 3. Describe differences between the four plots and discuss with your neighbors.
- 4. Try to explain differences between the four plots and share with the class.

Summary - Instrument Responses

- Working in the "pass band"?
 - Simply using overall sensitivity may be sufficient
 - Amplitude response virtually constant
- For most applications simply using the poles and zeros is sufficient
 - Can safely neglect the FIR filters most of the time
- Be careful of working up against the Nyquist
 - Acausal ringing
 - Some ripple but less than 5%
- Tools such as *evalresp* and SAC make it easy to work with responses
- Bigger worry
 - Structuring your instrument response calculations (e.g., deconvolution) for numerical stability

Exercise

- 1. Open SAC
- 2. Type "help transfer"
- 3. Look over the entire *document* that is SAC's response to your request for help.
- 4. Read the section "EVALRESP OPTION"

- 1. Find files extracted from a full seed volume in the shared Wednesday folder.
- 2. Extracted files are SAC "data" (waveforms), PZ files, and RESP.* files:
 - rdseed -d -p -R -f 2011-08-23_MW5.7_Virginia.93351.seed
 - Choose your favorite TA (or other station), let;s say it's "ISCO"
- 3. then run SAC
 - SAC> qdp off
 - SAC> r *.ISCO.*BHZ*SAC
 - SAC> p
 - SAC> rtrend
 - SAC> taper
 - SAC> p
 - SAC> w over
 - SAC> setbb pziscoz SAC_PZs_US_ISCO_BHZ_00_2011.094.21.39.00.0000_2013.220.16.43.60.99999
 - SAC> transfer from polezero subtype %pziscoz to none FREQ 0.004 0.006 2 3

- 1. Save the result of the transfer command and compare the original waveform. What happened?
- 2. What happens if you do not remove the mean and linear trend (rtrend)?
- 3. What happens if you do not taper the ends of the waveform to 0 start and ending values (taper)?
- 4. What response stage is taken into account by this transfer command?

- 1. Find the sensitivity for stage 0 in the RESP file for your chosen station and channel.
- 2. Go back to SAC
 - SAC> r <the result of your prior transfer command>
 - SAC> mul <what value you found for stage-0 sensitivity>
 - SAC> dif
 - SAC> p
- 3. Save this result and compare it to the original waveform. What happened?

- 1. Back to SAC
 - SAC> r *ISCO.*BHZ* (The version already detrended and tapered)
 - SAC> transfer from evalresp fname RESP.US.ISCO.00.BHZ to none FREQ 0.004 0.006 2 3
- 2. How does this result compare to the previous using the PZ file?
- 3. How does the result below compare to the uncorrected seismogram?
 - SAC> r *ISCO.*BHZ* (The version already detrended and tapered)
 - SAC> transfer from evalresp fname RESP.US.ISCO.00.BHZ to vel FREQ
 0.004 0.006 2 3
- 4. Can you **discuss** these differences with your neighbors?
- 5. What are/should be the units on the vertical axis?

Exercise

- 1. Find the IRIS web service (http://services.iris.edu) for time series.
- 2. Find out how to convert "counts" (the ground motion value plotted on the y axis) to m/s (SI units) via a simple scaling factor.
- 3. Choose "output=plot" and plot your favorite seismogram in SI units¹.

1. This is very useful for outreach and teaching!

- Find the value of the Sensitivity for the various non-zero stages in the RESP file and multiply them. Compare the result with the stagezero sensitivity and share and discuss with others.
- Find the value of the A0 normalization constant and the stage 0 sensitivity and multiply them. Compare this number to the CONSTANT in the PZ file and share and discuss with others.
- Do the PZ and RESP files have the same poles and zeroes?
 Discuss and explain any differences

Think about your own research.

Do you need to correct your waveforms for the instrument response?

Share with neighbors and/or the class.