Infrasound Observations for Source and Path Effects

Junghyun Park, Chris Hayward, and Paul Golden Southern Methodist University Il-Yeong Che and Jeong-Soo Jeon, Korea Institute of Geoscience and Mineral Resources Mihan McKenna (ERDC), Stephen Arrowsmith (SNL), Phil Blom (LANL), Omar Marcillo (LANL), Michael Pasyanos (LLNL), Keehoon Kim (LLNL), Doug Drob (NRL)

Motivation

- Natural and man made sources at regional distances
- Seismic and infrasound propagation

Example Explosion the Solid Earth -Atmosphere Boundary

Missile destruction by explosion ~ 50,000 lbs

FSU - 160 km Order of magnitude difference in Propagation Velocity

Overview

- History
- Propagation and the Atmosphere
- Instrumentation and Arrays
- Infrasound Sources
- Combining Seismic and Infrasound
- Large-N Demo

Krakatoa, 1883

Fig. 1.7 Barograms from all over the world showing the disturbances caused by the eruption of Krakatoa, from Symons (1888)

Simpkin and Fiske, 1983.

History

Evers and Haak, 2010

Fig. 1.11 Observations (crosses) from canon fires from the siege of Antwerp (circle) in the Netherlands (left) (Van Everdingen 1914) and Germany (right frame) (Meinardus 1915)

Evers and Haak, 2010

History

Меррет

Monitoring Atmospheric Nuclear Explosions

Figure 190. The earliest arrivals of the French Nuclear tests listed in Table 10. The waveforms are listed vertically in the order of decreasing apparent explosive yield. Increasing time runs from right-to-left. [Figure adopted from *Flores and Vega* (1975).]

McKisic, 1997

History

Comprehensive Nuclear Test Ban Treaty - 1996

INTERNATIONAL MONITORING SYSTEM

Types of Infrasound Arrivals

Figure 2. Cartoon illustrating the generation of seismoacoustic signals from earthquakes, which occurs via a variety of interactions between mechanical waves in the crust and atmosphere.

$$\lambda = \frac{V}{f} = V \cdot T$$

- Seismic and Infrasound frequency (f) bands similar (1-10 Hz)
- Infrasound velocities are at least 10 times slower than seismic ~ 330 m/s
- Infrasound Wavelengths are at least 10 times shorter (10s-100s m)

Arrowsmith et al., 2010

Atmospheric Path Effects -Temperature

Figure 4. Ray paths for a sound source on the ground to a range of 1000 km including both stratospheric and ionospheric reflections. [Figure adopted from *Donn* (1978).]

Skinner, Porter and Botkin, 1999

Atmospheric Path Effects - Plus Wind

Bedard and Georges, 2000

• Atmospheric wind direction and velocity perturbs velocity of propagation C_{ef}

• Weather patterns can introduce propagation ducts

Propagation model is time dependent

 $C_{eff} = C_T + \mathbf{n} \cdot \mathbf{v}$ $C_T: \text{ velocity from temp}$ **n**: direction of prop **v**: velocity of wind

Winds Parallel to Propagation

Figure 7. Tau-P simulations showing the effect of wind in the direction of propagation. Refractions occur in the thermosphere in both cases, but the addition of wind enhances the stratospheric duct.

Arrowsmith et al., 2010

 $C_{eff} = C_T + \mathbf{n} \cdot \mathbf{v}$

Winds Perpendicular to Propagation

Figure 8. Tau-P simulations showing the effect of wind perpendicular to the direction of propagation.

Arrowsmith et al., 2010

 C_{eff}

Zone of Silence?

Figure 7. Tau-P simulations showing the effect of wind in the direction of propagation. Refractions occur in the thermosphere in both cases, but the addition of wind enhances the stratospheric duct.

Hörweite des Kanonendonners von Antwerpen nach v. Everdingen und Meinardus.

Fig. 1.11 Observations (*crosses*) from canon fires from the siege of Antwerp (*circle*) in the Netherlands (*left*) (Van Everdingen 1914) and Germany (*right frame*) (Meinardus 1915)

Propagation & Atmosphere

Arrowsmith et al., 2010

Primary Focus on Two Complementary Paths Zone of Silence?

Origin time and location constrained by in-mine instrumentation

(ULDAR) from mine along one continental path and one oceanic path

Che et al., 2011

Propagation & Atmosphere

200

Seasonal Variations in Travel-Times and Backazimuths

CHNAR 260 to 289 m/s, characteristic of stratospheric returns

ULDAR 322 to 361 m/s, characteristic of stratospheric returns

- Strong seasonal variation in travel time to CHNAR
- Larger variation in travel-times to ULDAR (much faster)
- Small variation in backazimuth
- Seasonal Detectability

Che et al., 2011

Ray Tracing 2007-2009

CHNAR

ULDAR

- White Dots Height of Balloon Data
- Black Dots Height where atmospheric velocity is higher than velocity at surface
- White Circles Turning points in atmosphere of predicted eigenrays

Che et al., 2011

Seasonal Variation of Zonal Winds

Summer

Winter

Observations

Winter

Observations

Summer

Seismometers Capture Infrasound

Integrated Seismo-Acoustic Array

SEISMIC

INFRASOUND

Ingate and Berger, 2005

Bedard, 1999

Similar Frequency Bands but Order Magnitude Wavelength Differences

Noise Comparison

SEISMIC

INFRASOUND

Large Difference in Slowness and Noise Characteristics

Noise and Wind Velocity

INFRASOUND NOISE AS A FUNCTION OF FREQUENCY

0.0095 Hz 0.24 Hz 0.58 Hz 1.1 Hz

Seismic and Acoustic Characteristics

	Seismic	Acoustic
Scale	km	50 meters
Site	Hard rock	Forest
Incoherent Noise	High wavenumber	Low wavenumbers during wind
Coherent noise	Oriented with seismic sources	Oriented with wind or local sources
Sensor reliability	High	Moderate
Sensor cost	High	Moderate
Installation requirements	Moderate	Low
Array Gain	Moderate	High

Decreasing Incoherent Noise from Turbulence at Free Surface

Fig. 1.3. Daily cycle of the structure of the atmospheric boundary layer (Stull 2000), EZ: Entrainment zone

height in m	name exchange upper layer turbulent no const. (Ekman-layer) flux		exchange		stability influence of stability
1000			no const. flux		
20	turbulent layer	surface lay-		flux constant with height	
1	dynamical sublayer	layer)			no influence
0.01	viscous sublayer		molecular/ turbulent	1	of stability
0.001	laminar boundary layer		molecular		

Fig. 1.4. Structure of the atmospheric boundary layer

Foken, 2008

Array Designed for Wavelength Differences

Korea Infrasound Network

Nearly co-linear station distribution illustrates value of IMS resources to location

Che et al., 2017

Array Configurations Provide Source Detection and Back Azimuth Estimates

Detection on and around Korean Peninsula of Atmospheric Explosions

- ~10 t of TNT for three-station coverage from June to September
- ~5-30 t of TNT from October to May
- ~20t improvement over IMS stations

Instrumentation

Array Processing Seismo-Acoustic Event

Initially acoustic array processing driven by seismic observation

- Backazimuth
- Phase Velocity
- Phase Identification ?
- Arrival Times ?

Stump et al., 2001

Array Processing and Location

(1) Arrival Time, (2) Backazimuth to Source, (3) Phase Velocity Across Array

Data and Coherent Data Processing Rost and Thomas, 2002

Back azimuth model priors

Blom et al., 2015

Atmospheric Model

Infrasound Signals Detections and Location of Jan 2016 Explosion

Wind-corrected estimate Uncorrected estimate Source location

Park et al., 2017

Seismo-Acoustic and Infrasound Sources

Infrasound Sources

ctbto.org

Regional Seismo-Acoustic Signals from Mines

Seismo-Acoustic Signals

Che, 2008

NK Presumed Nuclear Explosions

km

0.4 km

Image © 2016 CNES / Astrium

© 2016 Google

4th NKNE 2016

Source

Infrasound Sources

Google Earth

NK Nuclear Explosions Infrasound – 2006, 2009, 2013

Che et al., 2017

Infrasound Signals Detections and Location of Jan 2016 Explosion

Wind-corrected estimate Uncorrected estimate Source location

Park et al., 2017

Atmospheric Variations

Predictions - Atmospheric Variations

Park et al., 2017

Infrasonic Source Energy

- Empirical yield-scaling from Whitaker et al. (2003)
- Stratospheric phase at closest array (KSGAR)
- Stratospheric wind correction from G2S model
- Equivalent yields:

NKNE	mb	Date	Tons of TNT
1 st	3.9	10/09/06	-
2 nd	4.5	05/25/09	0.6
3 rd	4.9	02/12/13	23.5
4 th	4.8	01/06/16	8.2
5 th	5.0	09/09/16	-

 No clear observations from 2006 explosion and no stratospheric phase at KSGAR for 2016 (Sep) explosion.

Park et al., 2017

Circleville, Utah Earthquake M_L 4.6, h ~ 9 km

Infrasound observations across arrays deployed in Utah

Arrowsmith et al., 2012

Infrasound Signals and Earthquake Source Location

BISL Location

PE Synthetics ~ 1 Hz, Stations with and without observations consistent with synthetics using the G2S atmospheric model

Infrasound Sources

Arrowsmith et al., 2012

Modeling Earthquake Infrasound

Following Pierce (1989) the Rayleigh integral can be used to estimate the near field infrasound given the acceleration time history at the free surface, a(t)

3D Synthetics are scaled by ShakeMap Amplitudes

Arrowsmith et al., 2012

Predicted and observed amplitudes ~ factor 2 Infrasound Sources

Infrasound From Volcanoes

Bolides

Chelybinsk, 15 Feb 2013

USArray Observations

Fig. 3. Spectrograms and bandpassed waveforms for (left column) Alarka station TOLK at [68.6" N, 140.6" W] along transect A at a distance of 54.4" from the source (middle column) station 104A along transect B at [43.8" N, 122.4" W], 81.3" from the source, and (right column) station 855A along transect C at [38.3" N, 80.2" W], 81.2" from the source. The power spectral densities are in dB with respect to a reference pressure of 20 µJa. Each column shows (top) a spectrogram for frequencies up to 3 Hz; (middle) a detail of that spectrogram up to 0.2 Hz; (bottom) a waveform bandpassed from 0.008 to 0.12 Hz. 225 min of data are shown for each station. Attrivial times corresponding to velocities of 30.028, and 260 m/s are marked on each waveform. Note the change of scale of the band-passed waveforms for transect A w. stransects B and C.

De Groot Hedlin and Hedlin, 2014

Forensic Use of Infrasound and Seismic Signals

On 12 August 2015, the city of Tianjin in Northern China was rocked by a series of explosions. The explosions occurred in a facility that housed hazardous chemicals.

Data from local stations in China are not available. The explosions, however, were large enough to be recorded at regional stations in China and Korea.

Goal - Perform an analysis (location, depth, yield) of the explosions using multi-phenomological observations (seismic, acoustic, craterology) using only regional data since local data may not be for future events.

Pasyanos et al., 2016

Combining Seismic and Infrasound

Regional Infrasound

Regional Infrasound Picks

Pasyanos et al., 2016

Combining Seismic and Infrasound

Combined Regional Location Seismic and acoustic signals are combined through BayesLoc Infrasound used as a prior for seismic solution

Pasyanos et al., 2016

Combining Seismic and Infrasound

Combined Yield Results - Hardrock

Likelihood

URBAN INFRASOUND NASCAR Race H. ELP Seismic Sensors 9 l Infrasound Sensors

Seismo-Acoustic Array

Country-En-Cir-

Google ear

2014 Google

Imagery Date: 4/10/2013 25 1995 293 m

lat 33.036744° lon -97.278963° elev 194m mbining Seismic and Inference 194m

1100 Feet

Texas Motor Speedway

Details Just Before and After Race Start

- Infrasound signals have been used for over 100 years to ID natural and human sources
- Infrasound wavelengths are a factor of 10 smaller than typical seismic wavelengths.
- Infrasound propagation is time dependent.
- Arrays are critical to separating infrasound signals from noise.
- Many opportunities for combining seismic and infrasound observations.

