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lce sheet systems
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As global air temperatures continue to rise, all of these components
—accumulation, melting and flow rates — are expected to increase.
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The role of ice streams

Ice streams carry ice from the ice-
sheet interior to the ice shelves/
outlet gga. ers

lce velocity metres/year

Roland Warner




The role of ice streams
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The role of ice shelves

Shrinking of ice shelves does not affect sea-level but ice shelves restrain the flow of
the grounded ice through “buttressing”
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Plan view of an ice shelf
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No acceleration change was observed in glaciers
south of the total break-up zone (e.g. Leppard).

The role of ice shelves

Removal of the northern 2/3 of the Larsen B
had an instant effect on the speed of glaciers
flowing into it

Acceleration increase occurred for all glaciers
feeding the catastrophic breakup area (e.g.
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Marine ice sheet instability
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Time scales for ice sheet changes

Ice sheets are vast and cold, and mainly respond to
change on long time scales L o—

Recently changes are occurring much faster at the ice
margins & ice shelves 1000 km _, 1000 km
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Ice shelf tidal motion

Ice shelves float on the ocean in hydrostatic

equilibrium & move with tides 1

GPS height measurements made at different
tidal states show this vertical motion

Laurie Padman

© Earth & Space
e e Detrended GPS time series at TS05 and TS06 Rosoarch
= —TS05
@ .00 — TSOG ) Limit of tidal flexure
» — AIS tide model Leg,
- e, !
© 5o 1 . tidal
) ! ice shelf S
£ floating
I O0¢F shelf
=
S -50
<)
L5134 76 18 20 22 24 2% 28

Day of Year in 2001

Workshop on Future Seismic and Geodetic Facility Needs in the Geosciences 51" May 2015



Steady-state ice sheet motion (20 years)

988-1989




Time-varying ice sheet motion

Whillans Ice Stream slowing down (1985-2005)
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Time-varying ice sheet motion

Ice flow modulated by tides at up to annual periods on Rutford Ice Stream, West
Antarctica
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Time-varying ice sheet motion
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Time-varying ice sheet motion |

Like faults, ice streams display a range of % 04
dynamic behavior :
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Time-varying ice sheet motion

Like faults, ice streams display a range of
dynamic behavior
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Time-varying ice sheet motion
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lce sheet seismic activity
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Ice sheet seismic activity

Each event is different due to a tidal pacing in stressing rate
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Time-varying ice sheet motion
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Detection of subglacial water activity

Track 306

140

-,

K]
“
"
B
L

ICESat 2003-2009

ICESat Anomaly (m)

0 2 4 6

@ GPS Station

== | ake Outline
Water Flow Path

== Grounding Line

= |ce Stream Limit

el S E Y
o A Yeat.
N of e \'\@:‘r*.‘ o

Ross
Ice Shelf

70
~ B85
E
H 60
2 5 Oct 03
3 6 Feb 047
S 55 27 May 0433
= -
£ -
8 50 y 03 Mar 06 3
Whillans Ice Stream . ] 02 Nov 06 *%
Fricker et al., Science, 2007 45 y 1
838 -83.7 -83.6
Lattude

Workshop on Future Seismic and Geodetic Facility Needs in tne weosciences 5+ iviay Zui>



Detection of subglacial water activity

ICESat 2003-2009 + GPS 2008-2014
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Whillans Ice Plain Dynamics
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Whillans Ice Plain Dynamics
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Seismic detection of subglacial water activity
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Winberry et al., GRL, 2009
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Estimating ice sheet mass balance

Three methods used to assess ice
sheet mass balance from satellites:

* Direct measurement of change in height

with time (using altimetry) Needs GPS ground-
truth

* Measurement of mass change with time
(using GRACE) Needs GIA

* Estimation of mass fluxes (input-output
method) Needs GPS velocities
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Antarctic ice sheet mass change

ICESat laser altimetry GRACE Input/output

Pritchard et al., Nature, 2007 Luthcke et al., 2013 Rignot et al., NatGeo, 2008
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Some discrepancy between results from the three methods

All agree there is net mass loss
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Volume Ioss from ice shelves is accelerating
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NASA/GSFC/LaRC/JPL MISR Team - David Diner

i lceberg calving

Iceberg calving from Pine Island Gl3 -
2000-2001

Recurrence interval of
large calving events is
decades




Seismic detection of iceberg calving

Four year field program funded by NSF
Episodic “icequakes” associated with rift in collaboration with Australian
motion detected with GPS & seismometers Antarctic Division
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Seismic detection of iceberg calving

N

Episodic “icequakes” associated with rift
motion detected with GPS & seismometers
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Seismic detection of iceberg calving

2009/08/21 06:27:41
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Seismic detection of iceberg calving

Synchronized video
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Seismic detection of iceberg calving

lceberg-sea surface interactions

Bartholomaus et al., 2012, JGR
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Summary

Ice sheets are changing & have large potential
contribution to sea-level rise (SLR) & freshwater
flux to the oceans

We
ma

In 2

WO

We
per
responsible for ice sheet mass loss

Continued long-term GPS & seismic observations
over the ice sheets are essential
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Summary

» lIce sheets are changing & have large potential
contribution to sea-level rise (SLR) & freshwater
flux to the oceans

» We still have limited understanding of ice sheet
mass loss processes

» In 20 years, we have learned a vast amount about
ice-sheet processes from GPS & seismology, that
would not have been possible via other methods

» We need to observe on short-time scales for long
periods to fully understand the physical processes .
responsible for ice sheet mass loss R ese R ey

sy T
» Continued long-term GPS & seismic observations ¥

over the ice sheets are essential

We learn something every time we deploy a GPS or seismometer on a glacier!
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