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Oceanic system: Reference model, no more?
(Plate tectonics = thermal boundary layer)

Spreading center Hotspot

Meltfrozen into cooling o =T [=E
lithosphere (Hirschmann, 2010) from SS-precursors
LR

Interconnected channels of ponded
melt, high melt-mohility and replenishing
(Sakamaki et al. 2013)




Subduction:
Transients in
tectonic loading
at megathrusts

> constitutive law for faults?
> plate boundary evolution?
> strain localization?

> hazard assessment?

Mavrommatis et al. (2014)

pre Tohoku M9
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Change in GPS network velocities —
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Plate tectonics 2.0 has to explain
continental system dynamics

Intraplate deformation

» Link surface deformation
(present and past)
to deep mantle dynamics

~ =™ Recorder of planetary evolution
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B Current Changing
plume center lithospheric thickness

nospn:
NW African subcont. W

¥

Canaw Delaminated Slab rollback and

Atlas subcontinental continental-edge delamination
mantle plume lithosphere causing subduction suction
(70-0 Ma) (since 45-25 Ma) (since ca. 10-8 Ma)

Duggen et al. (200¢
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Sustained operations

» Key for seismology and geodesy P BO
as well as support for analysis
efforts ' T

-130° 125° -120° 115° 110° -105° -100°

G0N 2014 Dec 02 22:41:56 Red: PEO (80% uncerlainty, only data with o, = 0.2 em/yr, |v| = 6 em/yr, rotaled by {49.08,-59.54,0.0160*'Myr). Grey: MORVEL NAM fixed. Conlact: twb{@usc.edu
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_“Auer et al. (_2014)u I
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seismic shear wave tomography maps at 200 km depth

EarthScope Stations Status as of April 2015
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< Auer et al. (2014)
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seismic shear wave tomography maps at 200 km depth
new model SAVANI-LS14, | > 12

» Construct variable resolution,
global shear wave models :

> Include global network /
information and surface wave data /

in regional studies /' short & \ |
[wgelength )

R‘—h—__



' Still sorting out what this all means:
Match between residual and

dynamic topography

> mantle flow induced “dynamic”
topography matches non-isostatic
residual

> Composition, radial anisotropy, or
remaining uncertainty in crustal
models causing complications

Becker et al. (2014)

mantle flow predicted topography
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One continental dynamics question:
Origin of intraplate seismicity?

-125° 120 115 110° -105° -125° -120° -115° -110° -105°
. : ; 50°

£

earthquake distribution

gCMTs and SLU catalog ANSS and Engdahl catalog events,
smoothed seismicity
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T TN .
‘ | A shear strain-rates
| |
(O3 | A ‘normal strain-rates
& L N

uke distribution COrrelati on
| | with seismicity |
if outside gray, away from plate
~98% significant boundary

GPS geodetic
strain-rates from

. . . Kreemer et al. (2014)
> kinematic constraints from GPS based

crustal deformation model match
seismicity

> not too surprising, but good baseline,
and indicates little aseismic deformation

En ¥

normal strain-rates
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Structure as an explanation?

T TN .
‘ | A shear strain-rates
| |
(O3 | A ‘normal strain-rate

earthquake distribution

> gravitational potential energy (GPE) variations
will lead to loading stresses
> structure of lithosphere may matter

GPE,
GPE

elastic thickness
Moho depth

~ structure

I0|.4I B IO.IGI
correlation -
with seismicity away from plate boundary : Moho depth, I.-° [km]{
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Change in dynamic
topography!
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Smoothed and filtered 2014 PBO solution and -105”

Qu eSt|O nsS: tide gauge reords
(GPS) verticals

x anthropogenic
x hydrological

x erosional

x magmatic

x tectonic

x mantle driven
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Evolution of topography, example of
solid Earth — surface interactions

|
84° 80° 76° 72°

Rowley et al. (2013)

Liu et al. (2008)
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Moving forward:
Pacific Array

Seafloor Age (Ma)

0 50 100 150 200
Slide courtesy of Hitoshi Kawakatsu



Moving forward:

Seafloor observatories

(seafloor “GPS”, cables, cf. Japan)

Direct
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Moving forward:

Joint sensor networks
(seismic, MT, GPS, ...) and inversions
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Moving forward:

Densification (more data is always better...)

. GPS, InSAR and dense seismology across faults
. Intermediate-period seismometer deployments

for crustal structure (passive-active)

Carrizo plane GPS profile
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Moving forward:

Community models

Flavors:

— Crustal velocity and strain-rate model
— Crustal structure model

— Lithospheric model

— Mantle model

— Rheology model

Error bars! (...)

Geodynamic models

— Even if micro-scale is poorly constrained, utility in integration

— The path is more important than the goal (cf. SCEC Community
Stress Model)

Open, collaborative data sharing
Open, collaborative method sharing

Reproducible and entirely published workflows



Moving forward:

Synthetic data libraries for hypothesis
testing A
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Moving forward:

A community computing facility
. Problems: :

T
- Solid Earth may be falling behind Whﬁ comes to high
performance computing ke

— Our scientific problems are unique (mixed deter;niﬁE‘,‘
data gaps, assimilation challenges,...) and require
different flavors of methods, making knowledge ®
transfer from other fields tricky

— Access to resources is a concern for many
. Solution?

— Dedicated solid Earth machine or alhcation

— Driven by science community
. Rally around solid Earth grand challenge questions

| Teem———




Moving forward:

People
- interdisciplinary community building
- interdisciplinary education
- addressing method gaps
K - facilitation of collaboration
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