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e Antarctica: geothermal heat flux and mantle viscosity

* North America: crustal composition of and its implications on
crustal strength



Large scale seismic arrays across major continents Crust and uppermost mantle beneath the US
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Large scale seismic arrays across major continents
Sharp seismic images for the crust and uppermost
mantle are then produced:

USArray/Transportable Array, 2004 — present, 1679 sites in L48
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Large scale seismic arrays across major continents

Sharp seismic images for the crust and uppermost
Model 2 (Shen et al., 2018):

mantle are then produced: Model 1 (Lloyd et al 2019): Monte Carlo inversion of surface wave
Adjoint full-waveform inversion and receiver functions
Surface to > 600 km depth; Surface to ~ 200 km depth;

Seismic stations in Antarctica (2001-2018)
Complete coverage of the West and central Antarctica but better

whole continent and Southern Oceans  resolution for crust/shallow mantle

Networks shown:
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etc.... Lloyd et al., 2019, JGR in review Shen et al., 2018, JGR



Regarding the strength/rheology, what we can learn
from these seismic models:
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Regarding the strength/rheology, what we can learn
from these seismic models:
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What we can learn from these seismic models:
part 1

e Antarctica: geothermal heat flux and mantle viscosity

® North America: crustal composition of and its implications on
crustal strength



The need for geothermal heat flux and mantle viscosity

models of Antarctica

Ice-sheet modeling shows that higher
geothermal heat flux would increase
the basal temperature, which can lead
to basal and may accelerate the
movement of the ice-sheet.

Geothermal flux at the top of the plume (mW/m?) Geothermal flux at the top of the plume (mW/m?)

Uplift rates from GPS do not match
predictions of 1-D viscosity models
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Geothermal heat flux: correlated with mantle shear velocity

Large-scale variation
in GHF is highly
correlated with
uppermost mantle
velocity structure.

Effect from the heat
generation within the
crust perhaps plays a
secondary role.

Much of the variation
of seismic speed in
the mantle is perhaps
thermal origin.
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Geothermal heat flux: correlated with mantle shear velocity

Large-scale variation
in GHF is highly
correlated with
uppermost mantle
velocity structure.

Effect from the heat
generation within the

crust perhaps plays a

secondary role.

Much of the variation
of seismic speed in

the mantle is perhaps

thermal origin.

140 45 50 55 A0 65 70 75 ] 85 90 |
Blackwell et al., 2011

Crustal thickness

& W
T <

Crustal Thickness (km)
W
<

Less correlated

45°-
40°-
35°-

30°-

-0
25° -

Mantle IVs of Ithe USI km/sec
]

T

y= [4.7

- 46
fa

w
o]

T

by
fo)

T

w
~

w
[\

Upper mid-crustal Vs (km/sec’

30 40 50 60 70 80 90 100
SHF (mW/m?)

Less correlated

T T

Vs at 100 km (km/sec)
:

. ! [ I I I I
30 40 50 60 70 80 90 100

0.00 0.05 0.10 020 0.50 1.00

—4.5
4.4
43

A\ 42
2A0° AT AR 29|0°_ [4'1

Shen and Ritzwoller, 2016

»
o
|

N
o
!

Well correlated With GHF!
0

4. T I 1 T T T
30 40 50 60 70 80 90 100

Normalized Energy (count)



Seismologically determined geothermal heat flux beneath South Pole

Similarity functional for S.P. GHEF in the US (mW/m’)
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A seismologically determined geothermal heat flux map of Antarctica

(a) Seismologically derived GHF (b) Uncertainties Compare with local measurements
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A seismologically determined geothermal heat flux map of Antarctica

(a) Seismologically derived GHF
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Estimating Viscosity Structure from the Seismic Model

e  Using seismic anomalies relative to a global 1D reference model (STW105) to compute temperature anomalies relative
to a temperature geotherm, and then viscosity variations relative to reference viscosities. We assume linear viscosity.

e  Other approaches estimate the mantle temperature and then directly use experimental flow laws to determine
viscosity, but they require more assumptions, such as composition and grain size

* Use (Wuetal, 2012):
—0.43438  (E*+ pV*) dvy
[8 In Us/a T]ah+zm RTL)z Us .

log,o(An) =

-- Temperature derivative from Karato (2008)
-- T, - reference temperature —assume 1315 °C adiabat
-- E* and V* - activation energy and volume —from Hirth & Kohlstedt (2003);

initially use dry olivine but test others (hydrous olivine, etc)
-- B - percent of seismic anomaly due to temperature

Wiens, Lloyd et al., in prep



65-200: 7x 10™Pa's
200-660: 2 x 10?' Pa's

Calibrating Viscosity Conversion

Nield et al (2014 o
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Barletta et al (2018)
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5x10"Pas Nield et al (2016)

200-400: 1.6x 10" Pas UM viscosity > 10% Pa's
5x10"Pas Model viscosity 65-400 km
400-660: 2.5x 10 Pas 1.3x10%* Pas

4x10"™Pas

Wiens, Lloyd et al., in prep

East Antarctica
sub-lithosphere
viscosity < 1022 Pa s

Compare various viscosity calculations to estimates
from geodetic observation

Choose:

Dry olivine diffusion creep rheology from Hirth &
Kohlstedt (2003)

Background upper mantle viscosity 1J05-R2 (lvins &
James, 2013)

Velocity anomalies entirely due to temperature (f =
1.0)

Made a correction for depleted continental lithosphere
in East Antarctica (Lee , 2003)

Preferred viscosity model values shown in red



Estimated Mantle Viscosity Maps

100 km depth 250 km depth 500 km dept
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Extremely low viscosity (~ 108 — 10%° Pa s) throughout the upper mantle beneath Marie Byrd Land and the Amundsen Coast
This indicates that the mantle response time to ice mass loss is ~ 100 years, rather than ~ 1000s years.

Very low viscosity shallow (< 200 km) beneath the Peninsula, but high viscosity deeper, perhaps due to subducted slab material.
Higher viscosity (~ 1020 Pa s) beneath Siple Coast and Ronne Ice Shelf region

Wiens, Lloyd et al., in prep



Main Message

3-D seismic models are useful for investigating the rheology/strength of the lithosphere-
asthenosphere system:

e Upper mantle seismic velocity provides constraints to thermal properties (e.g.
geothermal heat flux) and mantle viscosity in Antarctica.



What we can learn from these seismic models:
Part 2

® Antarctica: geothermal heat flux and mantle viscosity

® North America: crustal composition of and its implications on
crustal strength




Part 2. Crustal strength of North America:
Some new constraints from seismic investigations to composition
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Part 2. Crustal strength of North America:
Some new constraints from seismic investigations to composition
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Assessing the mechanical properties of rocks for the broad range of thermody-
namic boundary conditions prevalent in Earth’s interior remains a daunting task.
Rock rheology varies as a function of a number of constitutive and environmen-
tal aspects, including mineralogy, fluid content and chemistry, mineral grain size,
melt fraction, temperature, pressure, and differential stress conditions. The range
in mineralogical and chemical composition of rocks is enormous, and our knowl-
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Deep crustal composition (felsic or mafic): critical
for quantifying the strength of continental crust.
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Seismic signature of major element (SiO,) content
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Seismic signature of major element (SiO,) content
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Because seismic phases that are used to determine the crustal Vp/Vs are easily:
1. Biased by the sedimentary cover (slow seismic velocity)

2. Contaminated by noise due to 3-D structure of the Earth

The resulting Vp/Vs from EARS shows some extreme values at short scales.

EARS Best Estimate of Vp/Vs (2019/10/07 05:00:07 UTC)
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We:

1) adopted a 5-stage quality control (QC) to the P wave receiver functions.
2) adopted a 2-layer stacking method to analyze the P wave and its multiples in the

receiver functions.

EARS result for a USArray station in Denver Basin
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A new map of Vp/Vs of the continental US revealed by USArray/Transportable Array

G22A stacking map Receiver functions
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Depth(km)

A new map of SiO, of the continental US

revealed by USArray/Transportable Array
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Crustal strength map of the continental US:

N. Basin and Range
and Idaho batholith
are weak, correlated
with the higher
seismicity
surrounding the
Snake River Plains.

Colorado Rockies and
Rio Grande Rift:
Weak crust bounded
by strong Colorado
Plateau, Wyoming
Craton, and Great
Plains.

Central and eastern US including the S.
Appalachians: very strong crust.
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“Very strong
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Relatively weaker zone in
the N. Appalachian and
coastal plains.
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A chemically originated weak zone in the intermountain

Deep crust earthquakes tend not
to be triggered in the area with
the weakest crust, perhaps due
to the fact that the deformation

deep crust is under the plastic
flow law.

(Chemically originated) weak
zone in the intermountain west
(including Idaho batholith,
northern Rocky Mountains, and
NE Basin and Range) perhaps
provides the basis for the high
seismicity and strain-rate near
the intermountain seismic belt
region.

seismic belt.

Intra-plate crustal earthquakes

(1959-2019, M>4.5; @ : depth > 20 km )
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Main Message

3-D seismic models are useful for investigating the rheology/strength of the lithosphere-
asthenosphere system via ...

e Relating upper mantle seismic velocity provides with other thermal properties (e.g.
geothermal heat flux and mantle viscosity in Antarctica).

e Combing crustal seismic properties and petrology/mineral physics sheds light to
mapping the strength of the crust; the map of crustal strength of the continental US
matches the large-scale tectonism, showing strong correlation with the deformation
intra-plate seismicity and strain rate in the intermountain west.



Other continents are also under investigation

Moho depth of South Pole: ~ 38 km.
Crustal Vp/Vs at South Pole: ~ 1.70

IU_QSPA(-89.9289,144.4382)
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In Eastern China, RFs at ~ 700
stations have been examined
and new crustal thickness and
Vp/Vs maps are revealed.
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Expanding the expedition to global scale
In order to answer more general questions, such as the governing rule for strength of continental
lithosphere, requires ...

a .L""”\- / P’ J/I | —
Crustal Vp/Vs, chemical - el Australia? !jj «
composition, and strength in ... . ‘ T

s T

; .

Undergraduates from
underrepresented groups and
community colleges are incorporated
in the effort of compiling Vp/Vs...




And this belongs to a greater effort ...

Incorporating undergraduates and community college students in global seismology and
geosciences: GeoPATH @ Stony Brook
Lead Institutions:
School of Marine and Atmospheric Sciences and
Department of Geosciences
Stony Brook University / SUNY

>,
0

e e .
School of Marine and Atmospheric Sciences

(SoMAS) Surcr;_me‘gﬁeoPATH Program é018

&= = iy
' >

Partners:

Suffolk Community College
Nassau Community College
Several Long Island High Schools

What we do at Stony Brook:

* 4-6 week summer research program and faculty mentoring for
8-10 community college (CC) and high school students (for past 2
summers)

« 5-6 now majoring in geosciences with $2K Scholarship so far to
3-4 students continuing Geoscience studies at Stony Brook (SBU)

+ CC and high school visits/mentors/clubs

*  Curriculum adjustments to facilitate transition from CC to 4-year
SBU B.S. degree. \ - R . -

+ Two CC students have conducted Antarctica-related \ = =
seismological research and have successfully enrolled in the SOMAS,R‘GSG’%EJ
geosciences program at SBU to continue their expeditions. Vessels

M

4




Main Message

3-D seismic models are useful for investigating the rheology/strength of the lithosphere-
asthenosphere system:

e Relating upper mantle seismic velocity with other thermal properties (e.qg.
geothermal heat flux and mantle viscosity in Antarctica).

e Combing crustal seismic properties and petrology/mineral physics sheds light to
mapping the strength of the crust; the map of crustal strength of the continental US
matches the large-scale tectonism, showing strong correlation with the deformation
intra-plate seismicity and strain rate in the intermountain west.

e Seismic investigations to NA and Antarctica attract future geoscientists through
involvement of students from CC and underrepresented students at Stony Brook
University.

Thanks to:

Siyuan Sui, Lingli Li, Douglas Wiens, Andrew Lloyd, Andy Nyblade;

Team of POLENET(Terry Wilson et al); TAMNNET (Sam Hansen and students); RIS/DRIS (Rick Aster et al.)
GeoPATH program @ Stony Brook University, IRIS, and NSF






Sensitivity Analysis

Diffusion Creep - Dry Diffusion Creep - Wet Dislocation Creep - Dry
effective viscosity - linear approximation,
E'=1/2 E'(dislocation) - e.g. Christensen 1984

Diffusion Creep - Dry - B = 0.7 Diffusion Creep - Dry

(70% of seismic anomalies due to temperature) VM5a reference viscosity

n
\V]

Log Viscosity Pa s

N
o

—_
o)

Perturbation of assumptions generally results in similar patterns with somewhat less viscosity variation
Use of VM5a reference viscosity model raises viscosities by about 1/3 order of magnitude

Thece mndelc An nnt attain thea verv Inw vicerncitiec infarrad far Amiindcan Sea and the Paninciila



Thermodynamic modeling of the GHF of using seismic
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Why do high GHF areas have high GHF?

Surface Heat flow (mW/m?)

==

Moho temperature (°C)

R

* High Temperature of the Moho in the S. TAM area
where a lithospheric removal event has been
reported.

* The main variation in GHF is caused by lithospheric
thickness variation.

50 60 65 70 75 80 85 90 95 100 450 500 550 600 650 700 750 800 850 900

Lithosphere thickness (km) Potential temperature variation » The high MBL GHF is partially caused by the higher
= T g1 ° temperature in the asthenosphere, indicating a deeper
\ source of the GHF anomaly.

2
60 70 80 S0 100110120130140150160170180 100K +100K



(b) Si0,% 5km beneath the sedi bottom
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Deep crustal composition (and can be inferred by seismology)
contributes significantly for crustal strength

Chemical composition of the crust contributes significantly
to the weak zone surrounding the Snake River Plain.
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Seismologically determined composition
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(a) Bulk crust average SiO,%
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AlpArray

Large scale seismic arrays across major continents R\é‘; ‘ :
Earthscope/USArray (2004-present) 7 Sedl
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GP-IMPACT: Increasing Geosciences Enroliment through Research
Experiences, Mentoring, and Curriculum Intg se\Vith-Comn

par ngHiBR $shpato /e School of Marine and Atmosphenc?imences
Co-PlIs: Edmund Chang, Hyemi Kim, Gilbert
Hanson, and Kamazima Lwiza
Stony Brook University / SUNY
Partners:

Suffolk Community College
Nassau Community College
Several Long Island High Schools
Motivation: Numerous obstacles
limit students involvement in
Geosg/ences, especially minorities Multi-disciplinary
and high-needs students. S

,,,,,




GP-IMPACT: Increasing Geosciences Enroliment through Research

TAI'q1l. A _ __ _"4 AN _ 10 _ __ _ _

Experlences Mentoring, and Curriculum Interactlm
How Adtiresced?

. 4-6 week summer research program and faculty
mentoring for 8-10 community college (CC) and
high school students (for past 2 summers)

* 5-6 now majoring in geosciences with $2K
Scholarship so far to 3-4 students continuing
Geoscience studies at Stony Brook (SBU)

 CC and high school visits/mentors/clubs S

* Curriculum adjustments to facilitate transition from SESRE
CC to 4-year SBU B.S. degree. i

Broader Impacts?

* Recruitina and enaaaement with a diverse bodv of




